
Linux RAM-MM: Tech Details

Daniel Hoffman



Accounting

● We need data to make reasonable decisions
● Fetching data is hard, indexing data is hard
● We need three data sources

○ Physical RAM
○ Swap
○ Frontswap



Testing

● If we have accounting, we need to make sure its accurate
● Needed to make two fake devices for auditing the accounting code

○ RAM block IO device (effectively a physical swap disk)
○ RAM frontswap device (effectively a layer for opportunistic compression)

● RAM block IO device
○ Basic, but optimized specifically for swap
○ We can pull more performance tricks here but its fast enough
○ In hindsight we didn’t need to make this, but we can make it faster than the alternatives

● RAM frontswap device
○ Basic, but we actually need this
○ I’m making changes to the frontswap API



Frontswap API

● Current API
○ store, load, invalidate_page, invalidate_area, init

● New API: query
○ Query for physical memory impact for a memory page
○ Frontswap is mostly used for compression, so this is the space in RAM after compression

● Fake frontswap device returns 100% utilization since we don’t compress
○ There isn’t any harm in returning fake numbers here



Accounting: KSM and CoW

● Page tables are implemented as a tree in Linux
○ Only allocate index information for allocated virtual memory space

● KSM: Kernel Same-Page Merging
○ De-duplicating pages that contain the same information
○ Page fault on write to re-duplicate

● CoW: Copy on Write
○ Allocated memory that isn’t written is assumed to be arbitrary
○ Memory is allocated on write

● Although each of these can be indexed independently (AFAICT), easier 
implementation is traversing the page tree
○ Iterate through all pages of a task, add to linked list if it doesn’t exist and increase memory use
○ This is very slow since I’m lazy (it should be a hashmap but I use linked lists everywhere else)



Questions?


