
Linux RAM-MM

Daniel Hoffman



What?



How does it work?

● Userspace
○ `malloc` with price information -> `mmap` with price information -> syscall
○ Create an interrupt handler on `SIGUSR1` to handle eviction requests

● Kernelspace
○ Price information is bound to memory mapped page
○ Kthread runs in the background (`krammmd`)

■ Calculate what, if anything, should be evicted, register with a linked list
■ Send an interrupt to the process
■ Process reads pointer from linked list via `prctl` then calls `munmap`

○ Kernel also tries to evict pages when it needs RAM *now*, but its too late to wait for userspace



Market Design Considerations

● Does the Linux kernel exercise any preference at all?
○ De-duplicated pages can’t be freed unless the last virtual memory reference is free’d

■ It works like a garbage collector
○ Easily compressible pages (and compressed) pages use less space than non-compressed 

pages

● The concept of a RAM credit score
○ The only universal way to free RAM of a process is via SIGKILL or panicking the kernel
○ How well does the program estimate its own memory requirements?
○ How long does it take to respond to interrupts?
○ How does this information persist over time? We probably need a userspace daemon too...

● How do we incentivize RAM contracts while maintaining backwards 
compatibility?



Implementation Design Considerations

● How would `malloc` work?
○ To the user, RAM is allocated in size passed into `malloc`, allocation and free is done as pages
○ Co-locate similar contracts to maximize evict-ability since we can’t change RAM addresses after 

the fact
○ Another approach could be to have the kernel directly write memory changes

■ We require a standard `malloc` representation
■ Pass pointers via syscalls to register our memory allocator information with the kernel
■ Directly evict without context switching means more flexibility (99.9% usage all the time 

and evict elastic pages in the OOM)

● How can this work with KVM/hypervisor solutions?
○ Yo dawg I heard you like VMs so I QEMU’d your ESXi so you can KVM while you LXC

● There are plenty of other considerations entirely within the Linux kernel, but 
I’ve only listed those that change userspace



Practical Use Cases

● Very small: Microcontrollers
○ Microcontrollers don’t typically run Linux (no MMU), but similar concepts can probably be 

generalized through something like FreeRTOS

● Very large: virtualization hypervisors (Proxmox, ESXi, etc)
○ RAM pressure can come from the outside
○ Most machines assume they can use 100% of the RAM allocated to them, even in VMs



Status

● What works
○ `malloc` -> `mmap` -> syscall communicates price
○ Price information is stored alongside the memory mapped page
○ `krammmd` evicts RAM pages based on exercised preference, fires interrupt
○ Interrupt is handed, mmap’d address is read from another syscall,`munmap` is called

● What needs improvement
○ `krammmd` is *very* naive and uses some magic numbers, *very* slow
○ Reasonable `malloc` re-implementation

■ Co-locates similar contracts for more efficient evictions
■ Maybe allow for direct kernel writes for evictions (much faster)

○ Reasonable userspace implementations of RAM evictions (and incentives for participation)
■ If we opt for microcontroller applications, then we can develop a closed system faster
■ If we opt for desktop applications, then there is more practical benefit to larger adoption



Future Ideas

● Register `malloc` implementation with the kernel so it can evict pages itself
○ This exists *alongside* the interrupt system
○ Useful for guaranteed performance since there are no context switches

● Perhaps we can modify POSIX timers too...
○ Pre-negotiate RAM contracts per-execution, +/- time tolerance for execution

● Software floating point in kernelspace doesn’t appear to exist…
● Create a custom kernel allocator (similar to SLAB)
● Infrastructure TODOs

○ Benchmark over time
○ Automated testing

■ X86 and ARM in QEMU
○ Automated deployment to some shitty computer

■ ACM has 256MB RasPis (no wifi), RasPi Zeroes (but that’s 1GB)
■ Probably best to auto-deploy to Proxmox but a physical presence is always nice

○ Get a real Proxmox computer in ACM
■ SIGECOM Proxmox is running in a VM on my own Proxmox
■ Its a bit slow and likes to run out of RAM (ironic)



Questions?


